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Abstract. In the context of developing a generalizable and user-friendly com-
putational urban design tool, this study proposes and test a method of sensitivity
analysis and propose a visualization technique to 1) improve user understanding
of interactions between model parameters and objectives; 2) improve speed and
accuracy of optimization through intelligent reduction of the ranges in design
space. Sensitivity analysis of optimisation results from morphology-based, non-
linear urban models can be ineffective due to computational costs limiting the
number of samples possible, and large ranges of search due to users’ inexperience
with the model parameters. In response to these challenges, this paper puts for-
ward a method of identifying well-performing parameter ranges, and tests three
parameter-clustering experiments to improve optimization efficiency and quality
of outputs in comparison with a baseline NSGA-III optimization. These methods
are applied to results from an urban design optimization tool implemented within
the context of Singaporean urbanism.The proposedmethod shows improvement in
optimization convergence, especially when tighter parameter clustering is imple-
mented. A visualization technique to share insights from the proposed parameter
clustering method to an eventual user of the design tool is explored in the final
section which emphasizes on informing users to define better search boundaries.

Keywords: Urban Design Optimisation · Design Space Exploration ·Machine
Learning · Tool Development · Clustering Algorithm · Complexity

1 Introduction

With a view to creating a user-friendly urban design tool that can generate quick, accurate
design simulations for a variety of urban sites in South-East and East Asia, this paper
presents methods of simplifying and automating design space exploration. Computa-
tional urban design models are growing more extensive and intricate as city planners
seek to address complex and interlinked economic, social and sustainability goals. These
models are employed to support data-driven, evidence-based urban design approaches,
with increasing demand from both academic and commercial sectors in recent years
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(Calixto et al. 2021; Wortmann, 2017). Multi-objective optimisation (MOO) for com-
putational urban design exploration has been successfully demonstrated with several
notable limitations: although it is possible to identify better performing results by search-
ing more effectively using optimisation methods or by searching more extensively with
more computing power, the results generated present growing complexity with each
added parameter or objective (Koenig et al. 2020).

To improve the efficiency of multi-objective optimization for complex urban design
models, this study tests methods of sensitivity analysis to 1) improve understanding of
interactions between objectives andmodel parameters by proposing a visualization tech-
nique; and 2) reduce the span of each design space dimension by modifying parameter
ranges for further optimisation search based on clustering analysis of initial samples.

Sensitivity analysis (SA) is widely used to better understand uncertainty between
model inputs and outputs in fields as diverse as environmental simulation, fintech and
epidemiology. (Borgonovo and Plischke, 2016). Prior to conducting SA, a sample set of
the model is obtained either via random sampling or a more systematic method such as
Saltelli sampling (Saltelli, 2002). Subsequently, various analysis methods can be applied
to gather insights from the sample set, such asFourierAmplitudeSensitivityTest,Method
of Morris, and Linear Regression (Cukier et al. 1973; Morris, 1991). However, when
analyzing morphology-based urban models for the purposes of architecture and urban
design, the effectiveness of global sensitivity analysis is poorer due to the non-linear
nature these models and relatively low sample sizes possible due to high computational
costs of certain simulations. While carrying out optimisation without SA is possible,
it may be ineffective, as user behavior with incomplete understanding of the model
typically includes defining larger ranges for each parameter in hopes of including their
ideal solution.

In this paper, we propose a method to automatically refine the range of search using
clustering analysis on a sample set, with the goal of improving the effectiveness of
subsequent optimisation search. We integrate the Density-Based Spatial Clustering of
Applications withNoise (DBSCAN) algorithmwith theNon-dominated SortingGenetic
Algorithm III (NSGA-III) to achieve a novel design search workflow (Blank et al. 2019;
Ester et al. 1996). The proposed methodology is tested on an urban design model based
on development patterns in Singapore. The model generates urban fabric, including road
network, land parcels, and building geometry simultaneously based on a set of variable
parameters. According to changing needs of urban design models, designers can extend
the use of this demonstrated models by including new design parameters and objectives.
To test the proposed methods, optimization results are presented and compared (Sect. 3).
Final discussion identifies potential application to improve user understanding of param-
eter effects on optimization outcomes within the context of improving the user-interface
for an urban design optimisation tool (Sect. 4).

2 Methodology

This section describes the model setup (Sect. 2.1) and the proposed method and design
of clustering experiments (Sect. 2.2) in greater detail. Our model is described in 3
steps: the Urban Fabric Model used to subdivide the boundary into smaller parcels, the
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BuildingGeometryModel used to populate buildings at each parcel and theOptimisation
Model used for design search. Our targeted search method is elaborated in 3 phases: the
sampling phase, the clustering phase, and the optimisation phase. At the end of this
section, we describe the design of experiments to evaluate the impact of two parameters
of the clustering algorithm on the outcome of optimisation.

2.1 Model Setup

An initial parametric design model is created to closely match the urban fabric of pri-
vate residential development in Singapore. The parametric model firstly generates the
‘urban fabric’: road network and land parcels by subdividing a larger development area.
Subsequently, the model generates ‘building geometry’: oriented 3D geometries based
on design logic and local development guidelines and constraints. Our parametric model
was built in the Rhino and Grasshopper environment, using two open-source datasets:
1) Singapore’s latest masterplan for 2019 and 2) OpenStreetMap. The parameters and
fitness functions used are summarized in Tables 1 and 2, respectively. Although some
objectives are described as maximization in Table 2 due to clearer semantics, all seven
objectives are formulated as minimization problems in our simulation model. Secondly,
an optimisation model, built in Python, iterates the parametric model to automatically
search for best performing solutions.

Urban Fabric Model. The core algorithm for this model is based on an algorithm for
2D placement of streamlines from the Computational Geometry Algorithms Library
(Mebarki, 2023; Yang et al. 2013). We replaced each vector in the vector field with a
pair of orthogonal vectors, where one vector is either parallel or perpendicular to the
nearest boundary edge. This modification ensures that the resulting streamline curve
reflects the tangents of a given boundary shape, allowing it to be applicable to any urban
context. Figure 1 summarizes the steps taken by the model to result in subdivided parcels
and roads, using the first two parameters and involving the first four fitness functions
described in Table 1 and Table 2. Road widths and parcel boundaries are generated
automatically via offsets of the initial streamlines. The urban fabric is generated within
the context of a 2-ha study area, with newly generated street center lines linking into the
existing network of road center lines.

Building Geometry Model. This model simulates the development of residential
blocks, constrained by local guidelines and populated with an edge-following logic.
The model constraints include site setback of each parcel and maximum building height
allowed. These constraints are determined, following Singapore development regula-
tions, by the category of adjacent roads to the parcel, the height of the building to be
placed in the site and the zoning of the site/ location within Singapore. Building footprint
is selected, using parameters 3 and 4, from a library of existing building footprints in
Singapore arranged in order of increasing width and depth. The model calculates the
number of buildings to be placed on site using parameter 7, and tests possible orientations
on a grid of points generated on site using parameters 5 and 6. The edge-following logic
used in our algorithm systematically attempts to orient the building footprint on each
point on the grid, facing the closest parcel edge and starting with the points closest to the
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Table 1. Parameters used to generate solutions in parametric model.

Parameter Description Type / Range Scale

Cross Point U U parameter for selecting pair of streamlines Float /
0 - 1

Precinct

Cross Point V V parameter for selecting pair of streamlines Float /
0 - 1

Precinct

Bkey X Scale Select width of block key based on normalized
widths of all block keys

Float /
0 - 1

Building

Bkey Y Scale Select depth of block key based on normalized
depths of all block keys

Float /
0 - 1

Building

Grid Angle Angle to rotate the plane used to generate
initial grid of points

Float /
0 - 180

Parcel

Grid Spacing Spacing between each point in the grid Float /
20 - 30

Parcel

Parcel Storey Scale Parameter to govern trade-off between number
of blocks and height of each block

Float /
0 - 1

Parcel

Table 2. Fitness functions used to evaluate solutions in parametric model.

Fitness Function Description Scale

Total Road Length Minimize road coverage Precinct

Mean Area Deviation Minimize variance in area of subdivided parcels Precinct

Average Betweeness Index Maximize network betweeness of generated roads
within the local context

Precinct

Av. Straightness Index Maximize straightness of generated roads within the
local context

Precinct

Av. GPR Efficiency Maximize the total floor area allowable for the parcel Parcel

Av. NS to EW Aspect Ratio Minimize façade exposure to east-west orientation
for reducing heating due to direct sun exposure

Building

Av. View Obstruction Minimize view obstruction from units by penalizing
any building placed too close to another building

Building

boundary of the parcel, until all buildings are in place without intersections. The steps
for building generation are summarized in Fig. 2, and the final output from the combined
parametric model is shown in Fig. 3, for selected objectives. A consistent color gradient
ranging from green to yellow to red is applied for both objectives visualized in Fig. 3,
signifying best to worst performance.

Optimization Model. Multi-objective optimization of the model is set up using a cus-
tomized NSGA-III algorithm, developed within a Python framework, which is used in
all MOO runs in this paper (Blank and Deb 2020). NSGA-III is a genetic algorithm that
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Fig. 1. Progressive steps to generate urban fabric: 1) Site selection (red dashed line) and compu-
tation of best-fit orientation plane (grey plane); 2) Generation of all streamlines (teal); 3) Selection
of streamline pair to subdivide plot.

Fig. 2. Building geometry generation; a) setback and access; b) grid implementation; c) edge-
oriented key plan layout; d) volumetric geometry definition.

can be used for mixed-integer programming for many objectives using reference direc-
tions to direct its search. These reference directions are generated with the Das-Dennis
method, to uniformly sample all 7 parameter dimensions (Das and Dennis, 1998). We
implement a genetic algorithm,with the survival selection followingNSGA-IIImethods.
The mating process, however, is modified such that the crossover and mutation process
will repeat until the parameters of the new child solution is within specific ranges.

2.2 Targeted Search Method: NSGA-III + DBSCAN

Computational cost of simulations used in urban design model is not trivial, and with
the possibility of failed solutions due to any discontinuous functions resulting in many
wasted simulations. Accordingly, our strategy aims to avoid failed simulation runs by
testing for regions of each parameter that are prone to failed solutions.

We propose a method employing DBSCAN to automatically identify parameter
ranges that will result inmore efficient, subsequent optimization. In contrast toweighted-
sum scalarization approach, this method does not seek to reduce the number of dimen-
sions, as the interactions between complex fitness functions cannot be fully established
with a small sample set. In thefirst step,wegenerate a sample set by running 5generations
with 50 individuals each using the NSGA-III algorithm.

In the second step, we extracted a subset of the random sample to be used for cluster-
ing. This subset is extracted by firstly, removing samples that failed to give a complete
solution, and secondly, by removing samples that fall within a minimum percentile for
any fitness function. For example, with a fitness percentile (FP) value of 0.9, we only
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Fig. 3. Visualization of parametric model outputs for three residential sites in Singapore:
Tampines, Jurong and Punggol (Clockwise from top). NS to EW Aspect Ratio objective values
show for Tampines and Jurong, and View Obstruction for Punggol, with corresponding satellite
imagery (Google) for Jurong and Punggol shown for reference.

include solutions that perform in the top 90 percentile and remove solutions that perform
in the bottom 10 percentile for any objective. FP is one of the two clustering parameters
tested in our methodology.

In the third step, we clustered the normalized data points for each parameter using
DBSCAN algorithm. The algorithm generates clusters by firstly, grouping points that
are within a fixed epsilon distance (EPS) from each other and secondly, ensuring that
each group has at least a fixed minimum number of samples. For our tests, we fixed
the minimum number of samples to be 3 and assigned EPS as the second clustering
parameter to be tested. The final output from this step returns a set of parameter ranges
derived from the clusters identified from the algorithm.

In the fourth step, we conducted optimization using the new set of parameter ranges.
Using the modification as described in Sect. 2.1.3, the mating process between each
generation is repeated until success at a negligible computing cost relative to the total
time taken for optimisation.

Finally, we repeat steps 2 to 4, for a total of 3 experiments. The baseline test results
are created using the same model setup and optimized with a default NSGA-III. We will
further discuss the results in the next section.
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3 Results and Discussion

To improve our understanding of how model parameter clustering affects design search,
we create three clustering options using different sets of clustering parameters. The 3
options differ in terms of how tightly the algorithm constrains the ranges. The goal of
the first clustering option is to act as a baseline test for this method, using parameter
values that loosely constrain the clustering. The goal of the second clustering option is
to achieve fewer ranges per parameter, using only relatively better performing solutions
from the samples during clustering, using a lower value of 0.7 for fitness percentile. The
goal of the third clustering option is to identify more specific ranges per parameter using
a lower value of 0.03 for EPS.

3.1 Results from Clustering Parameter Ranges in Search Space

The results generated by clustering parameter ranges with the three separate settings are
visualized in Fig. 4. Each clustering option is represented in a single plot with seven
rows, representing the seven parameters used in the model. The refined search range for
each experiment is shown in grey. The identified ranges from our clustering algorithm
are visualized as a colored hatch.

The first two rows in Fig. 4 show that the ranges for parameters “Cross Point U” and
“Cross Point V” should be reduced as values lying on the extreme ends are consistently
not included in any of the 3 clustering options. These parameters govern the point to
select our pair of streamline curves to be used for site subdivision. Selecting streamline
curves with the intersection point near the edges of our site boundary results in poor
subdivision of the site that greatly increases the likelihood of failed building solutions
and are therefore excluded. For parameters “Bkey X Scale” and “Bkey Y Scale”, our
results show that it is possible to populate a site with footprints of varying aspect ratios,
as ranges identified span nearly the entire domain. However, well performing solutions
tend to cluster at a specific dimension for depth, as seen in the clearly separated clusters
for “Bkey Y Scale” in clustering option 2. For the last two parameters, “Grid Spacing”
and “Parcel Storey Scale”, we can conclude that while the entire range can result in
possible solutions, better performing solutions cluster around the upper ranges. This
conclusion is not unexpected as these two parameters affect the density of building
footprints generated, directly conflicting with the density-based objectives of “Av. GPR
Efficiency” and “Av. View Obstruction”.

3.2 Performance Comparison of Clustering Method in the Solution Space

To compare the performance for each clustering experiment versus the baseline, we
plotted for each objective the minimum, average and maximum score attained in each
generation (Fig. 5). A total of 50 individuals evolving over 30 generations (1,500 sam-
ples) for each experiment is considered for this analysis. Each of the seven objective is
plotted separately. These charts show that complexity in the results arising from con-
flicting relationships between multiple objectives would not allow us to evaluate the
results one objective at a time. Instead, summary indices are required to improve our
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Fig. 4. Design space and specific parameter ranges for three clustering options.

interpretation of the results from these charts; we use the normalized average score and
hypervolume indicators (Figs. 5, 6).

The chart in the middle column of the bottom row of Fig. 5 charts a normalized
average score for each experiment and the baseline. The score is firstly, normalizedwithin
the global minimum and maximum scores of each objective and secondly, averaged
across all seven normalized objective scores. As no experiment reaches a score of 0,
it can be concluded that at least 1 pair of objectives conflict. The normalized average
score is visualized using a histogram format in Fig. 6 to show the distribution of the
score achieved by each experiment. On the right of Fig. 6, we see that solutions with the
best normalized average score are from experiments 1 and 3. Furthermore, results from
experiment 3 show a positive skew as compared to the baseline, indicating that a larger
percentage of results from experiment 3 perform better than the baseline. On the left of
Fig. 6, we chart the hypervolume achieved for each experiment per generation (cite).
Signs of plateauing in the chart indicate diminishing improvements made to the pareto
front and imply convergence of results from the algorithm. From Fig. 6 we see that
experiments 1 and 3 are the fastest to converge as their respective hypervolume indicator
starts above the baseline, and crosses over to below the baseline around generation 12.
As experiments 1 and 3 are shown to converge more quickly and to produce solutions of
quality similar to the baseline, the study results suggest that smaller EPS values, which
produce tighter clusters, are providing the greatest benefit for target search in the model.
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Fig. 5. Solution Space – Performance of solutions over each generation for all experiments in all
objectives and with normalized average score.

Fig. 6. Hypervolume per generation for each experiment (left) and histogram of solution count
versus normalized average score for each experiment (right).
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4 From Parameter Clustering to Design Space Recommendation

The parameter clustering method presented above is developed with the goal of sup-
porting an urban design optimization tool capable of generating results formany possible
sites and meeting the requirements of a variety of users. In this context the proposed
method shows value as a means of automatically limiting design space for quicker
optimization and of providing information to the end-user on well-performing parameter
ranges.

The relative speed of convergence and quality of results demonstrated by experiments
1 and 3 (Fig. 6) suggests that the proposed targeted search method represents a viable
method of automatically creating an initial or default optimization run – allowing a user
to quickly identify a satisficing result. With a generalizable urban design model, there is
demand to continuously add new model parameters and evaluation methods – making
automated tuning of parameters a valuable tool.

To support the end-user to identify a result that best meets their requirements, the
parameter clustering method can be employed not to automatically limit optimization
search space, but instead to inform the user on parameter ranges that result in well
performing results. An example of how this design space recommendation could be
achieved is shown in Fig. 7, which shows a user interface (UI) for a web-based version
of the urban design optimization tool presented in this paper. In this UI, the performance
of a parameter value is visualized with a color gradient inserted below a two-handled
range slider. As the user adjusts the range sliders to define their design requirements

Fig. 7. Prototype of web-based tool. Ranges for each parameter are progressively updated as
random samples are evaluated on a cloud server and analyzed with user preferred weightings.
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for a given parameter, the performance gradient affords awareness of well-performing
parameter ranges within or adjacent to their design preferences. This design space rec-
ommendation system can be further personalized by adjusting the gradient according to
the objective weightings assigned by the user. The gradients can be remapped to reflect
which parameter ranges result in best performance in highly weighted objectives. This
methodwould allow the user to choose parameter ranges that reflect not only their design
preferences but also deliver the objective values they prioritize.

5 Conclusion

This paper presents a method of automatically clustering parameter ranges using
DBSCAN based on the position of well-performing results in a random sample. After
testing three proposed clustering options in comparison with a baseline optimization,
the proposed method is shown to achieve faster convergence to a solution. In the context
of a generalized urban design optimization tool, the proposed method presents value in
providing quick or default optimization settings for a frequently changing model. Addi-
tionally, themethod shows promise in supporting user understanding of well-performing
areas in the design space.

Future investigation may be able to maintain the quicker convergence demonstrated
for this method, while improving its closeness to the global optimal result. The concept
of dynamic parameter control can be integrated into this method such that the EPS
and FP parameters are continuously being refined instead of being a static variable.
Additionally, the research team plans to conduct more extensive user testing, which will
provide insight on the ability of the parameter clustering visualization to inform more
satisfactory outcomes for different users and on a variety of urban sites. If the method
is able to assist users to quickly identify results that satisfactorily meet their design
preferences, then lengthy optimization in search of a global optimum can be shown to
be unnecessary.
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